

Detecting T-cell Reinvigoration and Persistence Using 162 Patient-derived Ex Vivo Three-dimensional Spheroid Models

Katy A Lassahn, Ashley K. Elrod, Teresa M. DesRochers, and Kathryn M. Appleton Kiyatec, Inc, Greenville, SC 29601, USA

Background

Immune checkpoint blockade is shifting the paradigm for cancer treatment. However, this class of therapeutics is limited by insufficient or dysfunctional antitumor T-cells with impaired memory formation. Adoptive cell therapy is a treatment option for patients with exhausted resident T-cells, yet the effective use of this immunotherapy for the treatment of solid tumors is still in early stages. A durable patient response is possible when T-cell products successfully persist following recursive tumor cell exposure and resist differentiation and exhaustion [1]. Due to the variability of personalized cellular immunotherapies, verification of T-cell function would facilitate selection of the most desirable product for clinical use. Herein, we report a tissue agnostic ex vivo threedimensional model which recapitulates the tumor microenvironment for the assessment of T-cell performance.

Ex Vivo Response to Immunotherapy

Reinvigoration of Tumor Infiltrated Lymphocytes

Persistence of Adoptive Cell Therapies

Figure 1. Anti-PD-1 induced reinvigoration ovarian of patient TILs. (A) Representative flow cytometry plots of Patient 4 TILs from spheroids comparing negative control and anti-PD-1 after 48-72 hours. (B) TILs were evaluated for indicated markers and fold change was determined by normalizing percent of parent of anti-PD-1 treatment over the negative control.